Learning Relational Kalman Filtering

نویسندگان

  • Jaesik Choi
  • Eyal Amir
  • Tianfang Xu
  • Albert J. Valocchi
چکیده

The Kalman Filter (KF) is pervasively used to control a vast array of consumer, health and defense products. By grouping sets of symmetric state variables, the Relational Kalman Filter (RKF) enables us to scale the exact KF for large-scale dynamic systems. In this paper, we provide a parameter learning algorithm for RKF, and a regrouping algorithm that prevents the degeneration of the relational structure for efficient filtering. The proposed algorithms significantly expand the applicability of the RKFs by solving the following questions: (1) how to learn parameters for RKF from partial observations; and (2) how to regroup the degenerated state variables by noisy real-world observations. To our knowledge, this is the first paper on learning parameters in relational continuous probabilistic models. We show that our new algorithms significantly improve the accuracy and the efficiency of filtering large-scale dynamic systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation for Relational Kalman Filtering

The Kalman Filter (KF) is pervasively used to control a vast array of consumer, health and defense products. By grouping sets of symmetric state variables, the Relational Kalman Filter (RKF) enables to scale the exact KF for large-scale dynamic systems. In this paper, we provide a parameter learning algorithm for RKF, and a regrouping algorithm that prevents the degeneration of the relational s...

متن کامل

Lifted Relational Kalman Filtering

Kalman Filtering is a computational tool with widespread applications in robotics, financial and weather forecasting, environmental engineering and defense. Given observation and state transition models, the Kalman Filter (KF) recursively estimates the state variables of a dynamic system. However, the KF requires a cubic time matrix inversion operation at every timestep which prevents its appli...

متن کامل

On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR

Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...

متن کامل

On Line Electric Power Systems State Estimation Using Kalman Filtering (RESEARCH NOTE)

In this paper principles of extended Kalman filtering theory is developed and applied to simulated on-line electric power systems state estimation in order to trace the operating condition changes through the redundant and noisy measurements. Test results on IEEE 14 - bus test system are included. Three case systems are tried; through the comparing of their results, it is concluded that the pro...

متن کامل

Convergence Analysis of Remote Iterative Learning Control System with Kalman Filtering ⋆

This article investigates the iterative learning control (ILC) problem for a remote network control systems. To reduce wireless channel noise, a novel method of Kalman filtering is combined into the remote ILC system. The Kalman filtering reduce stochastic error on time axis, while the ILC operates on iteration axis. The convergence of the proposed system was analyzed and the convergence condit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015